p-group, metabelian, nilpotent (class 4), monomial
Aliases: C42⋊3C4, C23.4D4, (C2×Q8)⋊2C4, C23⋊C4.2C2, C2.9(C23⋊C4), C4.4D4.2C2, (C2×D4).4C22, C22.12(C22⋊C4), (C2×C4).2(C2×C4), SmallGroup(64,35)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C42⋊3C4
G = < a,b,c | a4=b4=c4=1, ab=ba, cac-1=a-1b-1, cbc-1=a2b-1 >
Character table of C42⋊3C4
class | 1 | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | |
size | 1 | 1 | 2 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -i | i | -i | -1 | i | linear of order 4 |
ρ6 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | i | i | -i | 1 | -i | linear of order 4 |
ρ7 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -i | -i | i | 1 | i | linear of order 4 |
ρ8 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | i | -i | i | -1 | -i | linear of order 4 |
ρ9 | 2 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C23⋊C4 |
ρ12 | 4 | -4 | 0 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ13 | 4 | -4 | 0 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | complex faithful |
(5 6)(7 8)(9 10 11 12)(13 14 15 16)
(1 2 4 3)(5 7 6 8)(9 12 11 10)(13 14 15 16)
(1 15 6 12)(2 14 7 11)(3 16 8 9)(4 13 5 10)
G:=sub<Sym(16)| (5,6)(7,8)(9,10,11,12)(13,14,15,16), (1,2,4,3)(5,7,6,8)(9,12,11,10)(13,14,15,16), (1,15,6,12)(2,14,7,11)(3,16,8,9)(4,13,5,10)>;
G:=Group( (5,6)(7,8)(9,10,11,12)(13,14,15,16), (1,2,4,3)(5,7,6,8)(9,12,11,10)(13,14,15,16), (1,15,6,12)(2,14,7,11)(3,16,8,9)(4,13,5,10) );
G=PermutationGroup([[(5,6),(7,8),(9,10,11,12),(13,14,15,16)], [(1,2,4,3),(5,7,6,8),(9,12,11,10),(13,14,15,16)], [(1,15,6,12),(2,14,7,11),(3,16,8,9),(4,13,5,10)]])
G:=TransitiveGroup(16,154);
(1 2)(3 4)(5 6)(7 8)(9 10 11 12)(13 14 15 16)
(1 4 7 5)(2 3 8 6)(9 13 11 15)(10 14 12 16)
(1 14 7 16)(2 11)(3 13 6 15)(4 10)(5 12)(8 9)
G:=sub<Sym(16)| (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16), (1,4,7,5)(2,3,8,6)(9,13,11,15)(10,14,12,16), (1,14,7,16)(2,11)(3,13,6,15)(4,10)(5,12)(8,9)>;
G:=Group( (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16), (1,4,7,5)(2,3,8,6)(9,13,11,15)(10,14,12,16), (1,14,7,16)(2,11)(3,13,6,15)(4,10)(5,12)(8,9) );
G=PermutationGroup([[(1,2),(3,4),(5,6),(7,8),(9,10,11,12),(13,14,15,16)], [(1,4,7,5),(2,3,8,6),(9,13,11,15),(10,14,12,16)], [(1,14,7,16),(2,11),(3,13,6,15),(4,10),(5,12),(8,9)]])
G:=TransitiveGroup(16,174);
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)
(1 11 14 6)(2 12 15 7)(3 9 16 8)(4 10 13 5)
(1 5 6 15)(2 14 10 11)(3 12 8 4)(7 9 13 16)
G:=sub<Sym(16)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,11,14,6)(2,12,15,7)(3,9,16,8)(4,10,13,5), (1,5,6,15)(2,14,10,11)(3,12,8,4)(7,9,13,16)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,11,14,6)(2,12,15,7)(3,9,16,8)(4,10,13,5), (1,5,6,15)(2,14,10,11)(3,12,8,4)(7,9,13,16) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)], [(1,11,14,6),(2,12,15,7),(3,9,16,8),(4,10,13,5)], [(1,5,6,15),(2,14,10,11),(3,12,8,4),(7,9,13,16)]])
G:=TransitiveGroup(16,176);
C42⋊3C4 is a maximal subgroup of
C42⋊4D4 C42⋊5D4 C42.14D4 (C2×Q8)⋊F5
(C4×C4p)⋊C4: (C4×C8)⋊C4 C42⋊4Dic3 C42⋊Dic5 C42⋊2F5 C42⋊2Dic7 ...
(C2×D4).D2p: C42.3D4 C8⋊C4⋊C4 (C2×D4).D4 C4⋊Q8⋊29C4 C24.39D4 C4⋊Q8⋊C4 C23.D12 C23.D20 ...
C42⋊3C4 is a maximal quotient of
(C2×C42).C4 C42⋊C8 C23.Q16 C24.6D4 C8⋊C4⋊5C4 C8⋊C4.C4 (C2×Q8)⋊F5
C23.D4p: C23.4D8 C23.D12 C23.D20 C23.D28 ...
(C4×C4p)⋊C4: (C4×C8)⋊C4 C42⋊4Dic3 C42⋊Dic5 C42⋊2F5 C42⋊2Dic7 ...
Matrix representation of C42⋊3C4 ►in GL4(𝔽5) generated by
1 | 4 | 1 | 1 |
4 | 1 | 1 | 1 |
4 | 4 | 1 | 4 |
4 | 4 | 4 | 1 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
4 | 0 | 0 | 0 |
0 | 4 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 4 | 0 | 0 |
0 | 0 | 0 | 4 |
0 | 0 | 1 | 0 |
G:=sub<GL(4,GF(5))| [1,4,4,4,4,1,4,4,1,1,1,4,1,1,4,1],[0,0,4,0,0,0,0,4,1,0,0,0,0,1,0,0],[1,0,0,0,0,4,0,0,0,0,0,1,0,0,4,0] >;
C42⋊3C4 in GAP, Magma, Sage, TeX
C_4^2\rtimes_3C_4
% in TeX
G:=Group("C4^2:3C4");
// GroupNames label
G:=SmallGroup(64,35);
// by ID
G=gap.SmallGroup(64,35);
# by ID
G:=PCGroup([6,-2,2,-2,2,-2,-2,48,73,199,362,332,158,681,255,1444]);
// Polycyclic
G:=Group<a,b,c|a^4=b^4=c^4=1,a*b=b*a,c*a*c^-1=a^-1*b^-1,c*b*c^-1=a^2*b^-1>;
// generators/relations
Export
Subgroup lattice of C42⋊3C4 in TeX
Character table of C42⋊3C4 in TeX